skip to main content


Search for: All records

Creators/Authors contains: "Rodwell, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Organization of Tropical East Pacific Convection (OTREC) field campaign, conducted August through October 2019, focuses on studying convection in the eastern Pacific and the Caribbean. An unprecedented number of dropsondes were deployed (648) during 22 missions to study the region of strong sea surface temperature (SST) gradients in the eastern Pacific region, the region just off the coast of Columbia, and in the uniform SST region in the southwestern Caribbean. The dropsondes were assimilated in the European Centre for Medium-Range Weather Forecasts (ECMWF) model. This study quantifies departures, observed minus the model value of a variable, in dropsonde denial experiments and studies time series of convective variables, saturation fraction which measures moisture and instability index and deep convective inhibition which quantify atmospheric stability and boundary layer stability to convection, respectively.Departures are small whether dropsondes are assimilated or not, except in a special case of developing convection and organization prior to Tropical Storm Ivo where wind departures are significantly larger when dropsondes are not assimilated. Departures are larger in cloudy regions compared to cloud-free regions when comparing a vertically integrated departure with a cloudiness estimation. Abovementioned variables are all well represented by the model when compared to observations, with some systematic deviations in and above the boundary layer. Time series of these variables show artificial convective activity in the model, in the eastern Pacific region off the coast of Costa Rica, which we hypothesize occurs due to the overestimation of moisture content in that region. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Low InP/dielectric interface trap density Dit will enable low subthreshold swings (SS) in mm-wave MOSFETs [1] using InGaAs/InP composite channels [2] for increased breakdown and in tunnel FETs (TFETs) [3] using InAs/InP heterojunctions [4] for increased tunneling probability. Reducing Dit at the etched InP mesa edges of DHBTs and avalanche photodiodes will reduce leakage currents and increase breakdown voltages. While it can be difficult [5] to extract Dit of III-V interfaces from MOSCAP characteristics, Dit can be readily determined from the SS of long gate length Lg MOSFETs. Here we report InP-channel MOSFETs with record low SS indicating record low Dit at the semiconductor-dielectric interface. The devices use a AlOxNy/ZrO2 gate dielectric and a 14nm channel thickness Tch. A sample of 13 MOSFETs at 2 m Lg shows SS=70mV/dec. (mean) ±3 mV/dec. (standard deviation), corresponding to a minimum Dit ~3×1012 cm-2eV-1. The lowest SS observed at 2 m Lg is 66 mV/dec. The results suggest that wide-bandgap InP layers can be incorporated into MOS device designs without large degradations in DC characteristics arising from interface defects 
    more » « less